Ünlü Türk Matematikçiler
ÜNLÜ TÜRK MATEMATİKÇİLER
El HAREZMİ
(770-840)
Ebu Abdullah Muhammed bin Musa el-Harezmi, matematik,
gökbilim ve coğrafya alanlarında çalışmış bir bilim adamıdır. Fars veya Türk
olduğu düşünülmektedir. 780 yılında Harzem bölgesinin Hive şehrinde dünyaya
gelmiştir. 850 yılında Bağdat’ta vefat etmiştir. Türk kökenli Matematik ve
Astronomi bilginidir. Cebir ve Astronomi bilimlerinde önemli eserler yazmıştır.
Harizmi’nin Ahmed, Muhammed ve Hasan adlı üç çocuğu olup, hepsi de Matematik
bilimi üzerinde ciddi çalışmalarıyla tanınır.
Cebir sözcüğü de Harezmi’nin “El’Kitab’ül-Muhtasar fi
Hısab’il Cebri ve’l-Mukabele” (Cebir ve Denklem Hesabı Üzerine Özet Kitap) adlı
eserinden gelmektedir. Bu eser aynı zamanda doğu ve batının ilk müstakil cebir
kitabı olma özelliğini taşımaktadır.
Matematik alanındaki çalışmaları cebirin temelini
oluşturmuştur. Bir dönem bulunduğu Hindistan’da sayıları ifade etmek için
harfler ya da heceler yerine basamaklı sayı sisteminin kullanıldığını
saptamıştır. Harezmî’nin bu konuda yazdığı kitabın Algoritmi de numero Indorum
adıyla Latince’ye tercüme edilmesi sonucu, sembollerden oluşan bu sistem ve
sıfır, 12. yüzyılda batı dünyasına sunulmuştur. Hesab-ül Cebir vel-Mukabele
adlı kitabı, matematik tarihinde, birinci ve ikinci dereceden denklemlerin
sistematik çözümlerinin yer aldığı ilk eserdir. Bu nedenle Harezmî (Diophantus
ile birlikte) “cebirin babası” olarak da bilinir. İngilizcedeki “algebra” ve
bunun Türkçedeki karşılığı olan “cebir” sözcüğü, Harezmî’nin kitabındaki ikinci
dereceden denklemleri çözme yöntemlerinden biri olan “el-cebr”den gelmektedir.
Hive bölgesinde bir Türk şehri olan Harizm’den Bağdat’a
gelerek zamanın alimlerinden ders aldı ve kendini yetiştirdi. Harizmi, zamanın
Abbasi Halifesi Me’mun’dan yardım ve destek gördü. Bağdat’taki Saray
Kütüphanesi’nin idaresi kendisine verildi. Matematik ve Astronomide
araştırmalar yaptı.
Doğu ve Batı ilim aleminde Cebir’e yaptığı katkılarla ün
yapıp, tanınan Harizmi; bu sahada ilk eser sahibidir. Eserlerinde Avrupa’nın
bilmediği “sıfır”ı kullanıp, cebir işlemlerini geometrik düşüncelerle
temellendirdi. Harizmi, “Kitab’ül Muhtasar fi Hesab’il Cebri Mukabele” adlı
eserinde, “cebir” kelimesini Matematiğe kazandırdı. Cebir konuları metodik ve
sistematik olarak ilk defa ortaya koydu. Zamanın matematiğine yeni bir yön vermiştir.
Latince’ye çevrilip, Avrupa’da yüzyıllarca faydalanılan,
“Kitab’ül Muhtasar fi Hesab’il Cebri Mukabele” ‘nin Arapça aslıyla Batı
dillerine tercümesi Avrupa ve Amerika’da yayınlandı. Eser; bir önsöz, beş bölüm
ve bir de ek bölümden meydana geliyordu. Muhteva olarak; birinci ve ikinci
dereceden denklemlerin çözüm şekilleri, bilinmeyenleri, çeşitli cebir
hesaplamalarını misallerle açıkladıktan sonra; nazari ve tatbiki hesaplama
şekilleri, zamanın hükümet işlerine ait hesapların yapılması, kanalların açılması,
bina yapımı, esnaf ve tüccar için lüzumlu işaretleri kapsıyordu. İkinci önremli
eseri: “Kitab-el Muhtasar fi hisaballindi” isimli kitabıdır. Arapça aslı mevcut
olmayan, Cambridge Üniversitesi’nde bulunan ve “Algoritmi de numero indoram”
adlı Latince kitaptır. Bugünkü “logaritma” terimi, Harizmi’nin bu eserinde
Latice, “algazizmi” olarak geçtiği sanılmaktadır.
Coğrafya alanında da tanınmış biridir ve coğrafya alanında
birçok araştırmalar yapmıştır. Dağlar ve kum yuvaları konusunda ölçüm ve
hesapları bulunmaktadır.
Bazı Eserleri
Matematik ile ilgili eserleri
El- Kitab’ul Muhtasar fi’l Hesab’il Cebri
ve’l Mukabele
Kitab al-Muhtasar fil Hisab el-Hind
El-Mesahat
Matematik alanındaki çalışmaları cebirin temelini
oluşturmuştur. Bir dönem bulunduğu Hindistan’da sayıları ifade etmek için
harfler ya da heceler yerine basamaklı sayı sisteminin (bkz. onluk sistem)
kullanıldığını saptamıştır. Harezmî’nin bu konuda yazdığı kitabın Algoritmi de
numero Indorum adıyla Latinceye tercüme edilmesi sonucu, sembollerden oluşan bu
sistem ve sıfır 12. yüzyılda batı dünyasına sunulmuştur.
Astronomi ile ilgili eserleri
Zîc-ul Harezmî
Kitab al-Amal bi’l Usturlab
Kitab’ul Ruhname
Coğrafya ile ilgili eserleri
Kitab surat al-arz
Tarih ile ilgili eserleri
Kitab’ul Tarih
EL-BİRÛNİ
(973-1048)
Bîrûnî (4 Eylül 973 – 13
Aralık 1048), Fars kökenli İslam bilgini. Türk kökenli olduğunu iddia edenler
de olmuştur. Tam adı Ebu Reyhan Muhammed bin Ahmed el-Birûnî’dir. Batı
dillerinde adı Alberuni veya Aliboron olarak geçer. Gökbilim, matematik, doğa
bilimleri, coğrafya ve tarih alanındaki çalışmalarıyla tanınır.
Bîrûnî, Merkezî Asya’da
tarihi bir bölge olan Harezm’de doğdu. Küçük yaşta babasını kaybetti.
Harizmşahlar tarafından korundu, sarayda matematik ve astronomi eğitimi aldı.
Buradaki hocaları İbn-i Irak ve Abdussamed bin Hakîm’dir. Bu dönemde daha 17
yaşındayken ilk kitabını yazdı. Harizmşah Devleti Me’mûnîler tarafından
alınınca Bîrûnî de İran’a giderek bir süre burada yaşadı. Daha sonra ise
Ziyârîler tarafından korunmaya başlandı. El Âsâr’ul Bâkiye adlı kitabını
Ziyârîlerin sarayında yazmıştır. İki yıl da burada çalıştıktan sonra
memleketine geri döndü ve Ebu’l Vefâ ile gök bilimi üzerine çalışmaya başladı.
1017′de Gazneli
Mahmut, Harezm Devleti’ni yıkınca Bîrûnî de Gazni şehrine gelerek burada
Gazneliler’in himayesine girdi. Sarayda büyük itibar gördü ve Gazneli Mahmut’un
Hindistan seferine katıldı. Burada Hintli bilim adamlarının dikkatini çekti ve
Hind ülkesi alınınca da Nendene şehrine yerleşerek bilimsel çalışmalarına
burada devam etti. Sanskritçeyi öğrenerek Hind toplumunun yaşamı ve kültürü
üzerine çalıştı.
Buradan tekrar Gazni
şehrine döndü ve yaşamının geri kalan kısmını bu şehirde tamamladı. Bu dönem
Bîrûnî’nin en verimli zamanı sayılmaktadır.Uzun zamandır hazırladığı Tahdîdu
Nihâyet’il Emâkin adlı eserini bu döneme denk gelen 1025 yılında yayınladı.
Astronomi üzerine yazdığı Kanûn-i Mes’ûdî adlı eserini Gazneli Mahmud’un oğlu
Sultan Mesud’a ithaf etmiştir.
El Birûni, astronomi üzerine yaptığı en
iyi çalışmayı Gazneli Mahmut’un oğlu Mesut’a sundu. Sultan Mesut da bunun
üzerine kendisine bir fil yükü gümüşü hediye edince, “Bu armağan beni baştan
çıkarır, bilimden uzaklaştırır.” diyerek bu hediyeyi geri çevirdi. Aslında
Birûni eczacılıkta uygulamalı eğitime, kitaplardan çok daha fazla önem
vermiştir. Birûni, elle tutarak ve gözlemleyerek veri toplamanın insana, kitap
okumaktan çok daha fazla yarar sağladığına inanmış ve bunu uygulamıştır. Gerçek
bir bilim anlayışına sahip olan Birûni, ırk kavramına da önem vermezdi. Başka
bir halkın ileri kültüründen derin bir saygıyla söz ederdi. Aynı şekilde dinler
ve düşünceler konusundaki anlatımı sırasında o dinler hakkında itiraz veya
eleştiride bulunmadığı gibi, o dindeki deyimleri aynen kullanmasıyla da dikkat
çekmektedir. Sanskrit dilinden Arapça’ya çevirdiği Potancali adlı kitabının
önsözünde “İnsanların düşünceleri türlü türlüdür, dünyadaki gelişmişlik ve
esenlik de bu farklılığa dayanır.” şeklinde yazmıştır.
Çok yönlü bir bilim adamı olan El Bîrûnî,
ilk öğrenimini Yunan bir bilginden aldı. Tanınmış ve seçkin bir aileden gelen
Harezmli matematikçi ve gökbilimci Ebu Nasr Mansur tarafından kollanan El
Bîrûnî, ilk çalışmalarını bu alimin yanında yaptı. İlk eseri, “Asar-ül
Bakiye”dir.
El-Bîrûnî’nin
eserlerinin sayısı yüz seksen civarındadır. Yetmiş adet astronomi ve yirmi adet
de matematik kitabı bulunmaktadır. Tıp, biyoloji, bitkiler, madenler, hayvanlar
ve yararlı otlar üzerinde bir dizin oluşturmuştur. Ancak bu eserlerden sadece
yirmi yedisi günümüze kadar gelebilmiştir. Özellikle Bîrûnî’nin eserlerinin
Ortaçağ’da Latince’ye çevrilmemiş olması, kitaplarının ağır bir dille yazılmış
olmasının bir sonucudur. Ancak Bîrûnî kendisinin de dediği gibi, yapıtlarını
sıradan insanlar için değil bilginler için yazmaktaydı.Yine Harezmi “Zîci’nin
Temelleri” adlı yapıtının 12. yüzyılda Abraham ben Ezra tarafından İbranice’ye
çevrildiği bilinmektedir. Batı’nın Birûni ilgisi ise 1870′lerde başladı. O
günden bugüne Birûni eserlerinin bazılarının tamamı veya bir kısmı Almanca ve
İngilizce’ye çevrildi.Mektuplarından, Bîrûnî’nin Aristo’yu bildiği anlaşılır.
İbn Sînâ gibi önemli bilginlerle beraber çalışan Bîrûnî, Hindistan’a birçok kez
gitti. Bu nedenle Hindistan’ı konu alan bir kitap yazdı. Onun bu kitabı birkaç
dile çevrildi. Birkaç dile çevirilen bu kitap çoğu bilgine örnek
oldu.Birûni’nin bir tane de romanı vardır.
Bîrûnî’nin matematikçi
yönü, en çok bilinen yönüdür. Yaşadığı yüzyılın en büyük matematikçisi olan
Bîrûnî, trigonometrik fonksiyonlarda yarıçapın bir birim olarak kabul
edilmesini öneren ilk kişi olup sinüs ve kosinüs gibi fonksiyonlara sekant,
kosekant ve kotanjant fonksiyonlarını ilave etmesidir. Bîrûnî’nin bu yönü Batı
Dünyası tarafından ancak iki asır sonra keşfedilip kullanılabilmiştir. Öte
yandan Bîrûnî’nin yeryüzünde yükseltisi bilinen bir noktadan ufuk alçalması
açısının ölçülmesi yoluyla merdiven yayı uzunluğunu hesaplaması da geometri
açısından önemli bir çalışmasıdır. Merdiven yayı uzunluğunun ilk kez Bîrûnî
tarafından bu yöntemle bulunması yaygın bir kanıdır. Ancak Bîrûnî bu yöntemi
başka bir bilginden aldığını belirtmiştir.
Bîrûnî’nin astronomi
alanında yaptığı çalışmaların başında Sultan Mesut’a 1010′da sunduğu “Mesudî
fi’l Heyeti ve’n-Nücum” adlı yapıtı gelmektedir. Bu yapıt günümüze gelmiş olup
bu konuda yaptığı çalışmalarının bir kısmı kayıptır. Kanun adlı eserinde Aristo
ve Batlamyus’un görüşlerini tartışma konusu yaparak Dünya’nın kendi ekseninde
dönüyor olma olasılığı üzerinde durması bilim tarihi açısından önemlidir. Ancak
bu konuda kesin bir sonuca varamadığı varsayılan Bîrûnî’nin günümüze değin bu
konuda bir eseri ulaşmamıştır.“Nihâyâtü’l-Emâkin” (Türkçe: Mekânların Sonları)
adlı yapıtı, coğrafyadan, jeoloji ve jeodeziye kadar bir dizi konudaki
yazılarını içerir. Sultan Mesut’a sunduğu “el-Kanunü’l-Mesudi”, Bîrûnî’nin
astronomi alanındaki en önemli yapıtıdır. Bilim tarihçilerine göre o,
Kopernik’le başlayan çağdaş astronominin temellerini atmıştır.Ayrıca gerilim
düzleminin gök apsisine göre eğikliğini de (enlem eğikliği) Kas, Gürgenç ve
Gazne’de yaptığı çeşitli hesaplamalarla aslına çok uzak değerlerde bulmuştur.
Ayrıca birçok elementli ve bileşikli hesaplayabilmiştir. Boylamın belirlenmesi
gerilimininkine nazaran daha zor olduğundan Bîrûnî, iki nokta arasındaki boylam
farkını enleme ve aradaki toplam uzaklığa dayanan bir formülle hesaplama yoluna
gitmiş, ölçme ve gözlemlerinde hata payını en aza indirgemek için uğraşmıştır.
Bunun yanında gözlem aletlerinin boyutunu büyütmek yerine onları çapraz
çizgilere bölmeleyerek duyarlılığı arttıracağını keşfederek verniye ilkesinin
temellerini atmıştır.
Bîrûnî,
“Kitâbü’l-Camahir fi Mârifeti’l-Cevâhir” (Türkçe: Cevherlerin özellikleri
üstüne) adlı yapıtında 23 katı maddenin ve altı sıvının özgül ağırlıklarını
bugünkü değerlerine çok yakın olarak saptamıştır. Aynı şekilde Hint tarihi
hakkında da kitap yazan Bîrûnî, Hintlilerin inandığı boş inançları,
inanışlarını, yaşam biçimlerini ve gelenek-görenekleri çok ayrıntılı olarak
anlatmış, bunu yaparken tamamen tarafsız ve önyargılardan uzak davranmıştır.Tıp
alanında da birçok eser veren Birûni, döneminde bir kadını sezaryenle doğum
yaptırmayı başarmıştır. Şifalı otlar ve birtakım ilaçlar üzerine yazdığı
“Kitabu’s Saydane”, Birûni’nin son yapıtı olmakla beraber 1050′de yazılmıştır.
Bu kitapta üç bin kadar bitkinin neye yaradığını ve nasıl kullanıldığı
yazmaktadır. İlaçların yanında o bitkinin Arapça, Farsça, Yunanca, Sanskritçe
ve Türkçe gibi başka dillerdeki adının yer alması etimolojik açısından çok
önemli bir gelişmedir.Bilimsel bakış açısı olarak İbn Sînâ’nın Aristo tarzı
düşüncesine karşı çıkan Bîrûnî, tek tanrı inancını benimseyerek Evren’in bir
başlangıcının olduğunu, öncesiz bir Evren’in tanrının gereksiz sayılması demek
olduğunu savunmuştur. İbn Sînâ’nın bu tarz yaklaşımına sürekli karşı çıkan
Bîrûnî’nin İbn Sînâ ile yazışırken yaptığı tartışmalardan bir kısmı günümüze
kadar ulaşmıştır.Öte yandan Bîrûnî, astroloji gibi bilim sayılmayan bir konuyla
da ilgilenmiş ve “Kitâbu’t Tefhim fî Evâili Sanaati’t-Tencîm” adında bir
astroloji eseri yazmıştır. Ancak simya, efsun, büyü gibi diğer akıl dışı
alanlar üzerinde çalışmadığı gibi bunlara karşı çıkmıştır. Bunun yanında
Bîrûnî, devletlerin tarihlerini incelerken ekonomik nedenleri araştırarak
devletlerin ilişkilerinin altında dînî nedenler aranmasının yanlış olduğunu öne
sürmüştür.
Batı’da “Aliboron” adıyla bilinen Bîrûnî’nin
yapıtları birçok Batı diline çevrilmiştir. Bîrûnî, hiçbir eserinde tek bir
bilime veya konuya bağlı kalmadan bilimi tek bir bütün olarak gören bir
ansiklopedisttir.
Bîrûnî’nin onlarca yapıtı arasında en çok
bilinenleri aşağıdaki gibidir:
El-Âsâr’il-Bâkiye
an’il-Kurûni’i-Hâli-ye
El-Kanûn’ül-Mes’ûdî
Kitâb’üt-Tahkîk Mâ
li’l-Hind
Tahdîd’ü
Nihâyeti’l-Emâkin li Tas-hîh-i Mesâfet’il-Mesâkin
Kitâbü’l-Cemâhir fî
Mâ’rifet-i Cevâ-hir
Kitâbü’t-Tefhîm fî
Evâili Sıbaâti’t-Tencîm
Kitâbü’s-Saydele fî Tıp
Bîrûnî, günümüzde en
bilinen İslâm bilginlerinden biridir. Tüm Dünya’daki çeşitli ülkelerde
Bîrûnî’yi anmak için sempozyumlar, kongreler düzenlendi, pullar bastırıldı.
Türk Tarih Kurumu 68. sayısını “Bîrûnî’ye Armağan” adıyla Bîrûnî‘ye tahsis
etti. 1973 yılında Türkiye’de basılan pullar arasında Bîrûnî’ye de yer verildi.
UNESCO’nun 25 dilde çıkardığı Conrier Dergisi 1974 Haziran sayısını Bîrûnî’ye
ayırdı. Kapak fotoğrafının altına, “1000 yıl önce Orta Asya’da yaşayan evrensel
dâhî Bîrûnî; Astronom, Tarihçi, Botanikçi, Eczacılık uzmanı Jeolog, Şair,
Mütefekkir, Matematikçi, Coğrafyacı ve Hümanist” diye yazılarak tanıtıldı.
Bîrûnî’ye ait bir minyatür, İstanbul’daki Topkapı Müzesi’nde bulunmaktadır.
Ömer Hayyam
(1048-1131)
Asıl adı Giyaseddin Ebu’l Feth Bin İbrahim El Hayyam’dır. 18
Mayıs 1048′de İranın Nişabur kentinde doğan Ömer Hayyam bir çadırcının oğluydu.
Çadırcı anlamına gelen soyadını babasının mesleğinden almıştır. Fakat o
soyisminin çok ötesinde işlere imza atmıştır. Daha yaşadığı dönemde İbn-i
Sina’dan sonra Doğu’nun yetiştirdiği en büyük bilgin olarak kabul ediliyordu.
Tıp, fizik, astronomi, cebir, geometri ve yüksek matematik alanlarında önemli
çalışmaları olan Ömer Hayyam için zamanın bütün bilgilerini bildiği söylenirdi.
O herkesten farklı olarak yaptığı çalışmaların çoğunu kaleme almadı, oysa O
ismini çokça duyduğumuz teoremlerin isimsiz kahramanıdır. Elde bulunan ender
kayıtlara dayanılarak Ömer Hayyam’ın çalışmaları şöyle sıralanabilir.
Yazdığı bilimsel içerikli kitaplar arasında Cebir ve
Geometri Üzerine, Fiziksel Bilimler Alanında Bir Özet, Varlıkla İlgili Bilgi
Özeti, Oluş ve Görüşler, Bilgelikler Ölçüsü, Akıllar Bahçesi yer alır. En büyük
eseri Cebir Risalesi’dir. On bölümden oluşan bu kitabın dört bölümünde kübik
denklemleri incelemiş ve bu denklemleri sınıflandırmıştır. Matematik
tarihinde ilk kez bu sınıflandırmayı yapan kişidir. O cebiri, sayısal ve
geometrik bilinmeyenlerin belirlenmesini amaçlayan bilim olarak tanımlardı.
Matematik bilgisi ve yeteneği zamanın çok ötesinde olan Ömer Hayyam
denklemlerle ilgili başarılı çalışmalar yapmıştır. Nitekim, Hayyam 13 farklı 3.
dereceden denklem tanımlamıştır. Denklemleri çoğunlukla geometrik metod
kullanarak çözmüştür ve bu çözümler zekice seçilmiş konikler üzerine
dayandırılmıştır. Bu kitabında iki koniğin arakesitini kullanarak 3.
dereceden her denklem tipi için köklerin bir geometrik çizimi bulunduğunu
belirtir ve bu köklerin varlık koşullarını tartışır.
Bunun yanısıra Hayyam, binom açılımını da bulmuştur. Binom
teoerimini ve bu açılımdaki kat sayıları bulan ilk kişi olduğu düşünülmektedir.
(Pascal üçgeni diye bildiğimiz şey aslında bir Hayyam üçgenidir). Öğrenimi
tamamlayan Ömer Hayyam kendisine bugünlere kadar uzanacak bir ün kazandıran
Cebir Risaliyesi’ni ve Rubaiyat’ı Semerkant’ta kaleme almıştır. Dönemin üç ünlü
ismi Nizamülmülk, Hasan Sabbah ve Ömer Hayyam bu şehirde bir araya gelmiştir.
Dönemin hakanı Melikşah, adı devlet düzeni anlamına gelen ve bu ada yakışır
yaşayan veziri Nizamül-mülk’e çok güvenirdi. Ömer Hayyam ile ilk kez
Semerkant’ta tanışan Nizam onu İsfahan’a davet eder. Orada buluştuklarında O’na
devlet hülyasından bahseder ve bu büyük hayalinin gerçekleşmesi için Hayyam’dan
yardım ister. Fakat Hayyam devlet işlerine karışmak istemez ve teklifini geri
çevirir. 4 Aralık 1131′de doğduğu yer olan Nişabur’ da fani dünyaya veda eder.
Bilim tarihinde 15. Yüzyıl Astronomu olarak tanınır.Timur'un torunu, Şahruh'un
oğlu Maveraünnehir'in Genel Valisi ve Timurlu devletinin İmparatorudur.
Semerkant'ta medreseler yaptırdı. Semerkant Rasthanesini kurdu. Bilim ve fenle
uğraşarak ününü siyasetten çok bilim ve kültür alanında yaptı. Döneminde ünlü
bilginleri toparlıyarak Semerkant'ı uygarlığın başlıca merkezi durumuna
getirdi.Bunda Kadızade Rumi ve Gıyaseddin Cemşid 'in büyük etkisi olmuştur.
Kendisini de Tarihçi,matematikçi ve gökbilimçiydi.Kurduğu Gözlemevinde yapılan
gözlemler sonucu hazırladığı Uluğ Bey Ziyci adlı eseri Doğu ve Batı Bilim
dünyasında bir kaç yüzyıl boyunca kullanılmıştır. 1841 ve 1853 de ingilizceye
tercüme edilmiş ve bu eser hakkında son makale 1917 yılında Müşteşrik
E.D.Knobel tarafından yazıldığı düşünülürse eserin yazıldığı tarihtan beş
yüzyıl geçmesine rağmen etkinliğini sürdürmüştür.
Uluğ Bey
( 1394 - 1449 )
Uluğ Beyin Çalışmaları Nelerdir, Uluğ Bey Matematik Alanında
Çalışmaları
Uluğ bey, Timur imparatorluğunun 4. sultanı olup Türk
matematikçi ve gökbilimci olmuştur. Sultanlık döneminde çeşitli yenilikler
getirmiştir. Yaptığı çalışmalar sayesinde matematik ve gökbilimcilikte rehber
olmuştur.
Semerkant’ta medrese ve rasathane yaptırarak mühendis ve
ustaları buraya toplamıştır. Tavanı ve her yeri gök cisimleri ile süsleyerek
harika bir manzara yaratmıştır. Rasathanenin gelişmesi için gerekli çalışmalar
sağladı. Gözlemevinin yapımı 12 yıl içersinde bitirilebildi. Gözlemleme
yapılarak çeşitli gök cisimleri araştırıldı. Gözlemevinin sorumluluğu Ali
Kuşçu’ya kalmış olup bütün araştırmaları ykaından takip etmiştir. Gök
cisimlerinin takibini yaparak araştırmalar gözlemevinde gerçekleştirildi.
Uluğ Bey çalışmalarının büyük bir kısmını trigonometri ilmi
üzerinde genişletti. Herkes onu astronomi eseri ile tanınmış olup
Semerkant’taki rasathane’de yaptığı çalışmalar ile bilmiştir.
Zic- Ulugi denilen cetveli bulmuş olup diğer rasathanelere
örnek olmuştur. Gürgani takvimi olan bu takvim dönemin ilime dayanan yegane
takvimi olmuştur.
Ali
Kuşçu
(1474-1525)
Türk İslam Dünyası astronomi ve
matematik alimleri arasında, ortaya koyduğu eserleriyle haklı bir şöhrete sahip
Ali Kuşçu, Osmanlı Türkleri’nde, astronominin önde gelen bilgini sayılır. “Batı
ve Doğu Bilim dünyası onu 15. yüzyılda yetişen müstesna bir alim olarak tanır.”
Öyle ki; müsteşrik W .Barlhold, Ali Kuşcu’yu “On Beşinci Yüzyıl Batlamyos’u”
olarak adlandırmıştır. Babası, Uluğ Bey’in kuşcu başısı (doğancıbaşı) idi.
Kuşçu soyadı babasından gelmektedir. Asıl adı Ali Bin Muhammet’tir. Doğum yeri
Maveraünnehir bölgesi olduğu ileri sürülmüşse de, adı geçen bölgenin hangi
şehrinde ve hangi yılda doğduğu kesinlikle bilinmektedir.
Ancak doğum şehri Semerkant, doğum
yılının ise 15. yüzyılın ilk dörtte biri içerisinde olduğu kabul edilmektedir.
16 Aralık 1474 (h. 7 Şaban 879) tarihinde İstanbul’da ölmüş olup, mezarı Eyüp
Sultan Türbesi hareminde bulunmaktadır. Ölüm tarihi; torunu meşhur astronom
Mirim Çele-bi’nin (ölümü, Edirne 1525) Fransça yazdığı bir eserin incelenmesi
sonucu anlaşılmıştır. Mezar yerinin 1819 yılına kadar belirli olduğu ve
hüsn-ü muhafazasının yapıldığı; ancak 1819 yılından sonra, Ali Kuşcu’ya ait
mezarın yerine, zamanının nüfuzlu bir devlet adamının mezar taşının konmuş
olduğu anlaşılmaktadır. Uluğ Bey’in Horasan ve Maveraünnehir hükümdarlığı
sırasında, Semerkant’ta ilk ve dini öğrenimini tamamlamıştır. Küçük yaşta iken
astronomi ve matema-tiğe geniş ilgi duymuştur.
Devrinin en büyük bilginlerinden; Uluğ
Bey , Bursalı Kadızade Rumi, Gıyaseddün Cemşid ve Mu’in al-Din el-Kaşi’den
astronomi ve matematik dersi almıştır. Önce,Uluğ Bey, tarafından 1421 yılında
kurulan Semerkant Rasathanesi ilk müdürü, Gıyaseddün Cemşid’in, kısa süre sonra
da Rasathanenin ikinci müdürü Kadızade Rumi’nin ölümü üzerine, Uluğ Bey
Rasathaneye müdür olarak Ali Kuşcu’yu görevlendirmiştir. Uluğ Bey Ziyc’inin
tamamlanmasında büyük emeği geçmiştir. Nasirüddün Tusi’nin Tecrid-ül Kelam adlı
eserine yazdığı şerh, bu konuda da gayret ve başarısının en güzel delilini
teşkil etmektedir. Ebu Said Han’a ithaf edilen bu şerh, Ali Kuşcu’nun ilk
şöhretinin duyulmasına neden olmuştur. Kaynakların değerlendirilmesi sonucu
anlaşılmaktadır ki; Ali Kuşcu yalnız telih eseriyle değil, talim ve irşadıyle
devrini aşan bir bilgin olarak tanınmaktadır. Öyle ki; telif eserlerinin
dışında, torunu Mirim Çelebi, Hoca Sinan Paşa ve Molla Lütfi (Sarı Lütfi) gibi
astronomların da yetişmesine sebep olmuştur. Bu bilginlerle beraber, Ali
Kuşcu’yu eski astronominin en büyük bilginlerinden birisi olarak belirtebiliriz.
Gelenbevi
İsmail Efendi
(1730-1790)
(1730-1790)
1730 yılında şimdiki Manisa’nın Gelenbe
kasabasında doğan Gelenbevi İsmail Efendi, Osmanlı İmparatorluğu
matematikçilerindendir. Asıl adı İsmail’dir. Gelenbe kasabasında doğduğu için
ikinci adı onun bu doğduğu kasabadan gelir. Daha çok Gelenbevi adıyla ün kazanmıştır.
Önce, kendi çevresindeki bilginlerden ilk bilgilerini almıştır. Daha
sonra, öğrenimini tamamlamak üzere İstanbul’a gitmiştir. Burada, çok değerli ve
kültürlü öğretmenlerden yararlanıp matematik bilgisini oldukça ilerletmiştir.
Müderrislik sınavını kazananarak 33 yaşında müderris olmuştur. Bundan sonra
kendisini tümüyle ilme verip çalışmalarına devam etmiştir.
Gelenbevi, eski yöntemle problem çözen
son Osmanlı matematikçisidir. Sadrazam Halil Hamit Paşa ve Kaptan-ı Derya
Cezayirli Hasan Paşa’nın istekleri üzerine, Kasımpaşa’da açılan Bahriye
Mühendislik Okulu’na altmış kuruşla matematik öğretmeni olarak atandı. Bu atama
ona parasal yönden bir rahatlık getirdi. Hakkında şöyle bir öykü anlatılır:
‘Bazı silahların hedefi vurmaması, padişah III. Selim’i kızdırmış ve bunun
üzerine Gelenbevi’yi huzuruna çağırarak ona uyarıda bulunmuştur. Gelenbevi
bunun üzerine hedefe olan uzaklıkları tahmin ederek gerekli silahlardaki
düzeltmeleri yapmış ve topların hedefi vurmalarını sağlamıştır. Gelenbevi’nin
bu başarısı padişahın dikkatini çekmiş ve padişah tarafından
ödüllendirilmiştir. Gelenbevi, Türkçe ve Arapça olmak üzere tam otuz beş eser
bırakmıştır. Türkiye’ye logaritmayı ilk sokan Gelenbevi İsmail Efendi’dir.
Hüseyin Tevfik Paşa
(1832-1901)
(1832-1901)
Vidinli Hüseyin Tevfik Paşa (1832-1901) bir Osmanlı generali ve bilim
adamıdır. İstanbul’da 1892 yılında İngilizce olarak yazdığı özgün bir eser olan
“Linear Algebra” (Lineer Cebir) adlı eseri dünya çapında çağın en önemli
Matematik kitaplarından biridir.
Hüseyin Tevfik Paşa 1832 yılında günümüzde Bulgaristan sınırları içinde
olan, o zamanlar Osmanlı Devleti’ne bağlı Vidin kentinde doğdu. Babası Hasan
Tahsin Efendi’ydi. Ailesi İmamzadeler olarak tanınırdı[1]. İlköğrenimini
Vidin’de tamamladıktan sonra 14-15 yaşlarında İstanbul’a gitti ve Maçka’da
bulunan Mekteb-i İdadi-i Askeriye’de okudu. Daha sonra Harbiye Mektebi’ni
bitirdi ve Erkan-ı Harbiye’ye kabul edildi.
Harbiye Mektebi’nde matematik derslerindeki yeteneğiyle Cambridge
Üniversitesi’nden mezun olmuş olan matematik hocası Tahir Paşa’nın dikkatini
çekmiş ve Tahir Paşa kendisine özel dersler vermiştir. Mezun olduktan sonra
kendisi de Harbiye’de cebir cebir dersleri vermeye başladı, Tahir Paşa ölünce
onun matematik dersleri de Hüseyin Tevfik Paşa’ya kaldı. Harbiye’deki hocalığı
devam ederken, Tophâne Tecrübe ve Muayene Komisyonu’na da getirildi. 1868′de
Paris’teki Mekteb-î Osmanî’ye müdür muavini olarak gönderildi ve aynı zamanda
balistik ve tüfek imalatı üzerine incelemelerde bulunmakla görevlendirildi. Bu
arada matematik bilgisini geliştirmek için Paris’te üniversiteye devam etti ve
Paris’te kaldığı iki yıl boyunca makaleler yayımladı ve bilimsel toplantılara
katıldı.
Hüseyin Tevfik Paşa, 1872′de Osmanlı Devleti’nin Amerikan silah
fabrikalarına ısmarladığı tüfeklerin imalatını ve şartnâmeye uyulup uyulmadığını
kontrol etme göreviyle ABD’ye gönderildi. 1878 yılına kadar ABD’nin Rhode
Island eyaletinde kaldı ve bu süre içinde matematikle uğraştı; Lineer Cebir
adlı İngilizce kitabını bu sırada yazmış ve Argand’ın kompleks sayılarla ilgili
teorisinde ileri sürdüğü çarpımı üç boyutlu uzaya uygulamanın bir yolunu
bulmuştur.
1878 yılında II. Abdülhamit tarafından Mühendishane-i Berrî-i Hümâyûn’un
başına Mühendishane Nazırı olarak atandı. Bu görevde kısa bir süre kaldı.
1883-1886 yılları arasında Osmanlı Devleti’nin Washington Büyükelçiliği
görevini sürdürdü. 1889 yılında Ticaret ve Nafia Nazırı görevine atandı.
Ölümüne kadar padişah II. Albdülhamit’in yaveri olarak görev yaptı. 16 Haziran
1901 tarihinde vefat etti. Mezarı Eyüp semtinde bulunmaktadır.
Gazi Ahmed Muhtar Paşa ve Yusuf Ziya Paşa ile birlikte 1865 yılında kurduğu
Cemiyet-i Tedrisiyye-i İslâmiye sonradan Darüşşafaka Lisesi’ne dönüşmüştür.
Eserleri
Eserleri
Hüseyin
Tevfik Paşa’nın eserleri şunlardır:
- Zeyl-i usul-i Cebir
- Cebr-i Âlâ
- Fenn-i Makina
- Mebahis-i İlmiye Mecuasmda yazdığı makaleler (Hesab-ı Müsenna = Dual Aritmetique)
- Tahir Paşa’nın Usul-i Cebir adlı eserine yazdığı ek
- Usul-i llm-i Hesap
- Astronomi
- Mahsusat ve Gayrı Mahsusat
- Linear Algebra
Lineer Cebir eserinin önsözünde Hüseyin Tevfik Paşa söyle yazmıştır: “Bu
kitapta incelenen lineer cebir, dünyanın Sir William Hamilton’a borçlu olduğu
quaterniyonlara çok benzer. Lineer cebir, quaterniyonların bütün
potansiyellerine sahiptir ve güçlüğü daha azdır. Quaterniyonlar üniversitelerde
öğretilmektedir ve kabul görmüş bir bilgidir. Lineer cebirin de aynı kabulü
görüp görmeyeceğini, hattâ quaterniyonların yerini alıp almayacağını şimdiden
bilmiyorum”. Kendi sisteminin üstünlüğünü ise şöyle ifade etmiştir:
“Quaterniyonların çarpımı, isim olarak bile düzlem geometride ele alındığında,
bizi üç boyutlu uzayda çalışmaya zorlamaktadır; hâlbuki lineer cebirde yalnızca
iki boyut ele alındığı zaman bir üçüncü boyutu düşünme durumunda değiliz”.
Hüseyin Tevfik Paşa’nın bu eseri tercüme değildir ve konuya özgün katkı
yapması açısından çok önemlidir.
Tevfik Paşa’nın başka pek çok görevleri olmuş, Fransa ve ABD’de kaldığı
sıralarda Fransızca ve İngilizce’yi, bu dillerde kitap yazabilecek kadar iyi
öğrenmiştir. Burada matematik dersleri vermiş, yine bu sıralarda arkadaşlarıyla
çıkarttığı Mebâhis-i İlmiyye adlı aylık dergiye makaleler yazmıştır. Bu dergide
yayımladığı makaleleri arasında “Mahsûsât ve Gayr-ı Mahsûsât” isimli felsefî
bir yazısı, ayrıca türev ve fonksiyonlar üzerine yazıları bulunur.
Hüseyin Tevfik Paşa, daima devlet memuriyetiyle görevli olmasına rağmen,
matematik bilimlerle ilgilenmeye zaman ayırabilmiş, zengin bir kütüphane
oluşturmuş, çevresindeki Sâlih Zekî gibi yetenekli gençlere, vakit ayırmış,
periyodik yayınlarla entellektüel bir ortamın oluşmasına gayret sarf
etmiştir.Gelecek nesillere katkıda bulunmuştur.
Kerim Erim, Cumhuriyet döneminde matematiği uluslararası bir niteliğe kavuşturmuştur. Bu anlamda erken dönem Cumhuriyet matematiğinin uluslararası yüzüdür. Hem uluslararası bilimsel gelişmeleri yakından izlemiş, hem de uluslararası bilim topluluğuna bir araştırmacı olarak doğrudan katılmıştır. 1940-1952 yılları arasında İstanbul Üniversitesi Fen Fakültesi’ne bağlı Matematik Enstitüsü’nün başkanlığını yaptı. Türkiye’de yüksek matematik öğretiminin yaygınlaşmasında ve çağdaş matematiğin yerleşmesinde etkin rol oynadı. Mekaniğin matematik esaslara dayandırılmasına da öncülük etti. Matematik ve fizik bilimlerinin felsefe ile olan ilişkileri üzerinde de çalışmalarda bulunan Erim’in Almanca ve Türkçe yapıtları bulunmaktadır.
Kitapları:
* Nazari Hesap(1931)
* Mihanik(1934)
* Diferansiyel ve İntegral Hesap(1945)
* Über die Traghe-its-formen eines modulsystems (Bir modül sisteminin süredurum biçimleri üstüne – 1928)
Kerim Erim (1894 – 1952) Hayatı ve Eserleri
Kerim Erim, İstanbul Yüksek Mühendis Mektebi’ni bitirdikten
(1914) sonra Berlin Üniversitesi’nde Albert Einstein’in yanında doktorasını
yaptı (1919). Türkiye’ye dönünce, bitirdiği okulda öğretim üyesi olarak
çalışmaya başladı. Burada Mustafa İnan gibi önemli bilim adamlarının da
hocalığını yaptı. Üniversite reformunu hazırlayan kurulda yer aldı. Yeni
kurulan İstanbul Üniversitesi Fen Fakültesi’nde analiz profesörü ve dekan
olduğu gibi Yüksek Mühendis Mektebi’nde de ders vermeye devam etti. Yüksek
Mühendis Mektebi İstanbul Teknik Üniversitesi’ne dönüştürülünce buradan ayrıldı
ve yalnızca İstanbul Üniversitesi’nde çalışmaya devam etti. Daha sonra burada
ordinaryüs profesör oldu. 1948 yılında Fen Fakültesi dekanlığına getirildi.Kerim Erim Cumhuriyet Türkiyesi matematiğinin en büyük kurucularındandır. Diferansiyel ve integral hesabın ve matematiksel analiz metotlarının eğitiminin ülkemizde en kapsamlı biçimde verilmesinde en büyük rol onundur. Ülkemizin ilk matematik doktoru olan Kerim Erim bu alanlarda sadece eğitim çalışmalarıyla yetinmemiş, matematik araştırmalarını da başlatmıştır
Ülkemizde bir matematik doktorası yöneten ilk bilim adamımız da odur. Bilimin uluslararası niteliğine ve uluslararası bilimsel yayın yapma gereğine önem veren, enstitü çalışmaları ve bilimsel yayınlar aracılığıyla bunu ilk defa kurumsallaştırarak pratiğe dönüştüren bir bilim insanıdır.Kerim Erim, Cumhuriyet döneminde matematiği uluslararası bir niteliğe kavuşturmuştur. Bu anlamda erken dönem Cumhuriyet matematiğinin uluslararası yüzüdür. Hem uluslararası bilimsel gelişmeleri yakından izlemiş, hem de uluslararası bilim topluluğuna bir araştırmacı olarak doğrudan katılmıştır. 1940-1952 yılları arasında İstanbul Üniversitesi Fen Fakültesi’ne bağlı Matematik Enstitüsü’nün başkanlığını yaptı. Türkiye’de yüksek matematik öğretiminin yaygınlaşmasında ve çağdaş matematiğin yerleşmesinde etkin rol oynadı. Mekaniğin matematik esaslara dayandırılmasına da öncülük etti. Matematik ve fizik bilimlerinin felsefe ile olan ilişkileri üzerinde de çalışmalarda bulunan Erim’in Almanca ve Türkçe yapıtları bulunmaktadır.
Kitapları:
* Nazari Hesap(1931)
* Mihanik(1934)
* Diferansiyel ve İntegral Hesap(1945)
* Über die Traghe-its-formen eines modulsystems (Bir modül sisteminin süredurum biçimleri üstüne – 1928)
Cahit Arf (1910-26.12.1997) Hayatı ve Eserleri
Ülkemizde matematigin simgesi haline
gelen Cahit ARF 1910 yilinda Selanik'te dogdu. 1932 yilinda Galatasaray
Lisesi'nde matematik ögretmenligi, 1933 yilinda Istanbul Üniversitesi Fen
Fakültesi'nde profesör yardimcisi (Doçent adayi) olmustur. Doktorasini 1938
yilinda Almanya'da Clölting Üniversitesi'nde tamamladi. Daha sonra Istanbul
Üniversitesi'ne dönen ARF. 1943'de profesör. 1955'de Ordinaryüs Profesör oldu.
1964-1965 yillari arasinda Fransa'da bulunan Prineiton'daki Yüksek
Arastirma Enstitüsü'nde konuk ögretim üyesi olarak görev yapti.
1938 yilindan ben Cahit ARF cebir, sayilar teorisi, elastisite teorisi, analiz,
geometri ve mühendislik matematigi gibi çok çesitli alanlarda yaptigi
çalismalarla matematige temel katkilarda bulunmus, yapisal ve kalici sonuçlar
elde etmistir.
Bütün Türk
matematikçilerine dolayli veya dolaysiz bir sekilde esin kaynagi olmus, yaptigi
uyarilar ve verdigi fikirlerle çevresindeki tüm matematikçilerin ufuklarini
genisletmis ve çalismalarini yeni bir bakis açisiyla yönlendirmelerini
saklamistir.
Cahit ARF'in ilk çalismasi, 1939 yilinda Almanya'nin ünlü bir matematik dergisi
olan Crelle Journal Dergisi'nde yayinlanmistir. Cahit ARF çözülebilen cebirsel
denklemlerin bir listesini yapmak amaciyla Göttingen'de ünlü matematikçi
Hasse'nin doktora ögrencisi oldu. Hasse'nin önerisiyle özel hallerle problemini
çözdü. Cahit ARF bu çalismasiyla sayilar teorisinde çok özel bir yeri olan
lokal cisimlerde dallanma teorisine çok öneli yapisal bir katkida bulunmustur.
Burada buldugu sonuçlardan bir bölümü dünya matematik literatüründe "Hasse-Arf
teoremi" olarak geçmektedir.
Bundan sonra ugrastigi problem,
matematikte "kuadratik formlar" olarak bilinen konudadir. Uzayda
konisel yüzey denklemleri buna basit bir örnek olarak gösterilebilir. Bu
konudaki temel problem, kuadratik formlarin bir takim invariantlar, yani degismezler
yardimiyla siniflandirilmasidir. Bu siniflandirma Witt adinda ünlü bir Alman
matematikçi tarafindan karakteristigi ikiden farkli olan cisimler için 1937'de
yapilmistir. Karakteristik iki olunca problem çok daha zorlasiyor ve Witt'in
yöntemi uygulanamiyordu. Cahit ARF bu problemle ugrastigi ve karakteristigi iki
olan cisimler üzerindeki kuadratik formlari çok iyi bir biçimde siniflandirdi.
Bunlarin invariantlarini, yani degismezlerini insa etti. Bu invariantlar dünya
literatüründe "Arf Invariantlan" olarak geçmektedir. Bu çalismasi
1944 yilinda Crelle dergisinde yayinlandi ve Cahit ARF'i dünyaya tanitti.
1945'lere gelindiginde düzlem bir egrinin herhangi bir kolundaki çok kat
noktalarin çok katliliklarinin yalniz aritmetige ait bir yöntem ile nasil
hesaplanacagi iyi bilinmekteydi. Düzlem halde algoritmanin basladigi sayilar
egri kolunun parametreli denklemlerinden bilinen bir kanuna göre elde
ediliyordu. Genel durumda ise böyle bir sonuç henüz bulunamamisti.
Bu
siralarda Istanbul'da Patrick du Val adinda Ingiliz bir matematikçi
bulunuyordu. Du Val genel halde algoritmanin basladigi sayilara
"karakter" adini vermis ve egrinin tüm geometrik özelliklen bilindigi
zaman bu karakterlerin nasil bulunacagini göstermisti. Bunun tersi de dogruydu.
Bu karakter bilinirse, egrinin çok katillik di/isi, yani geometrik özellikleri
de bulunabiliyordu. Burada açik kalan problem ise bir egrinin parametreli
denklemleri verildiginde karakterlerini bulabilmek idi. Cevap düzlem egriler
için bilinmekte, ama yüksek boyutlu uzaylarda bulunan tekil egriler için
bilinmemekte idi. Ayrica, yüksek boyutlu bir uzayda tanimlanmis bir tekil
egrinin çok katillik özelliklerini, yani geometrik özelliklerini bozmadan en
düsük kaç boyutlu uzaya sokulabilecegi de bu problemle beraber düsünülen bir soru
idi. Bu çesit sorular matematiksel bakis açisinin temel problemi olan
siniflandirma probleminin egrilere uygulanmasi bakimindan son derece önemli ve
zor sorulardi. Cahit ARF bu problemi 1945'de tamamiyla çözmüs ve tek boyutlu
tekil cebirsel kollarin siniflandirilmasi problemini kapatmistir. Bu sonucun
zorlugu hakkinda fikir elde edebilmek için düzgün varyetelerin
siniflandirilmasi probleminin bugüne kadar yalniz 1. 2 ve kismen 3 boyutlu
varyeteler için çözüldügünü tekilliklerinin siniflandirilmasi probleminin ise l
boyutlu varyeteler, egriler için Cahit ARF tarafindan çözüldügünü göz önüne
almak gerekir. Cahit ARF bu problemi çözerken önemini gözledigi ve problemin
çözümünde en önemli rolü oynadigini farkettigi bazi halkalara
"karakteristik halka" adini vermis ve daha sonra gelen yabanci
arastirmacilar bu halkalara "Arf halkalari" ve bunlarin kapanislarina
"Arf kapanislari" adini vermislerdir. Cahit ARF'in bu çalismasi
1949'da Proceedings of London Mathematical Society dergisinde yayinlanmistir.
Cahit ARF'in 1940'li yillarda yaptigi bu çalismalarin günümüzde hala
kullaniliyor olmasi, onun kaliciligini ispatlamistir.
Cahit ARF'i ilk taniyan bir kisi onun sadece matematige ilgi duyan bir insan
oldugu izlenimini edinebilirdi. Cahit ARF için. matematik her seyin üzerinde ve
ötesindeydi. Ancak, onun TÜBITAK'in kurulmasinda ve gelismesinde gösterdigi
çabayi ve özeni bilenler Cahit ARF'in öyle içine kapanik, matematikle ugrasan
dis dünyayla ilgilenmeyen bir kisi olmadigini bilirler. Mühendisligin günlük
hayattan dogan problemlerine her zaman ilgi gösterirdi. Ama, bu probleme
mutlaka matematiksel bir model bulmaya da çalisirdi. Hele bir de pratikten
gelen problemi matematik olarak çözüme kavusturursa pek keyiflenirdi. Mustafa
INAN'la böyle bir isbirligi yapmis ve INAN'in köprülerde gözlemleyip,
arastirdigi bir sorunun matematiksel kesin çözümünü vermistir. Bu çalismalari
Cahit ARF'a Inönü Ödülünü kazandirmistir.
Üniversitede rektörlük, dekanlik gibi idari görevler almaktan kaçinmistir.
Arastirmacilarin bu gibi görevlerden uzak durmalari gerektigi görüsündeydi. Ama
uzun yillar TÜBITAK Bilim Kurulu Baskanligini da özveriyle yürütmüstür.
Ortadogu Teknik Üniversitesi'nde bulundugu yillarda yeni ve farkli bir
üniversite modelinin ve kültürünün ortaya çikmasi için çaba göstermistir.
Akademik dünyanin yapay hiyerarsik ayrimlariyla alay etmistir. Genç ögretim
üyeleri ve ögrencilerle çok güzel, yararli ve keyifli bir diyalog içindeydi.
Her zaman üniversite içi çekismelerden ve politikadan özenle uzak durdugu
halde. ODTÜ sistemi tehlikeye düstügünde duyarli ve sorumlu bir bilim adami
olarak kendini bir mücadelenin içine atmaktan çekinmemistir. Bu onurlu
mücadelede bile matematigin aksiyomatik yaklasimini kimseye fark ettirmeden
kullanmistir.
Cahit ARF 1948'de Inönü Ödülü, 1974'de TÜBITAK Bilim Ödülü, 1980'de ITÜ ve KTÜ
Onur Doktorasi, 1981'de de ODTÜ Onur Doktorasini aldi, genç yasta Mainz
Akademisi Muhabir üyeligine seçildi ve Türkiye Bilimler Akademisi Onur Üyesi
olmustur.
Cahit ARF matematikte kalici izler birakarak 26 Aralik 1997'de aramizdan
ayrilmistir. Türkiye'de ve dünyada her zaman hatirlanacaktir.
Feza Gürsey
(1921-1992)
Feza Gürsey, (d. 7 Nisan
1921, İstanbul – ö. 13 Nisan 1992, New Haven). Türk fizikçi ve matematikçi.
7 Nisan 1921′ de
İstanbul’da Prof. Dr. Remziye Hisar (1902-1992) ve Dr. Reşit Süreyya Gürsey’in
(1889-1962) ilk çocuğu olarak dünyaya geldi. Babası Dr. Reşit Süreyya Gürsey,
tıp doktoru, fizikçi ve öğretmen olmasının yanı sıra bilime ve sanata büyük
ilgisi olan bir aydındır. Annesi Prof. Dr. Remziye Hisar, Darülfünun’un fen
okuyan ilk kız öğrencilerinden olup, Avrupa’da kadınların pek azının kariyer
yapabildiği bir dönemde Sorbonne’da Devlet Kimya Doktorası yapmayı başarmış bir
bilim insanıdır.
Feza Gürsey, İstanbul
Anadoluhisarı’nda, Remziye Hanım’ın Otağtepe’deki aile evinde doğmuştur.
İlkokula Paris’te Jeanne d’Arc okulunda başlamış ve öğretmenlerinin
hayranlığını kazanmıştır. Kızkardeşi Deha Gürsey Owen’ın anlattığı üzere,
öğretmeni Madame Denizot, herşeyi çabucak öğrendiği için Feza Gürsey’i çok
seviyor, onu yanından ayırmıyormuş.
İlkokul üçüncü sınıfa
Galatasaray Lisesi’nde devam eden Gürsey, okulun sevilen, hayran olunan bir
öğrencisi olmuştur. Sınıf arkadaşı Emekli Büyükelçi Özer F. Tevs bir yazısında
Feza Gürsey’i şöyle anlatmıştı:
“39 Feza Gürsey,
zamanının bütün Galatasaray Liselilerini ve yerli yabancı kıymetli hocalarını
etkilemiş bir talebe idi. Ortaokul üçüncü sınıfta, akşam etüdünde, bakardık,
Feza bir köşede Proust’un “Yitik Zamanı Araştırırken” adlı felsefi hikâyelerini
okuyor veya Cézanne’ın röprodüksüyonlarını inceliyor… Fransız hocalarımız büyük
teneffüslerde onu muallimler odasına çağırır sohbet ederlerdi… Bizden iki sınıf
daha büyük, çok çalışkan bir öğrenci daha vardı. Mezun olduktan sonra Fransız
hocalardan birisine, ‘Feza mı yoksa diğer öğrenci mi daha üstündü’ diye
sormuşlar. O da, ‘bir köy öğretmeni ile bir ordinaryüs profesör arasında ne
kadar fark varsa, Feza ile diğer öğrenci arasında o kadar fark vardı’ demiş.
Feza Gürsey, fizik okumaya
lise yıllarında karar vermiştir. Galatasaray Lisesi’ni 1940 yılında
birincilikle bitirdikten sonra İstanbul Üniversitesi Fen Fakültesi öğrencisi
olmuş, 1944 yılında Fizik-Matematik bölümünden de birincilik ile mezun
olmuştur. Milli Eğitim Bakanlığı sınavını kazanarak İngiltere Imperial
College’a gitmeye hak kazanmış, burada 1945-1950 yılları arasında Prof. Dr. H.
Jones’ın danışmanlığı altında doktora çalışmalarını yapmıştır. Bu dönem
içerisinde “Tek boyutlu bir istatiksel sistem” ve “İki bileşenli dalga
denklemleri üzerine” başlıklı iki önemli makale yayımlamıştır. 1951-1957
yılları arasında Cahit Arf’ın desteği ile İstanbul Üniversitesi Tatbiki
Matematik Kürsüsü’ne asistan olarak tayin edilmiştir. 1953 yılında “Spinli
elektronların klasik ve dalga mekaniği” adlı tezi ile doçent ünvanını almış,
bir yıl sonra Tatbiki Matematik Kürsüsü’ne doçent olarak atanmıştır.
1952 yılında İstanbul
Üniversitesi Fen Fakültesi asistanlarından Suha Pamir ile evlenmiş ve 1954
yılında Suha ve Feza çiftinin tek çocukları Yusuf dünyaya gelmiştir. 1957-1961
yılları arasında, eşi ve oğlu ile birlikte Atom Enerjisi Komisyonu’nun bursu
ile ABD’de Brookhaven Ulusal Hızlandırıcı Laboratuvarı’nda bulunmuştur. Bu
dönemde Brookhaven Ulusal Hızlandırıcı Laboratuvarı, Princeton İleri Çalışmalar
Enstitüsü ve Columbia Üniversitesi’nde fizik dünyasında en ileri seviyede
çalışma yapanlar ile birlikte çeşitli çalışmalar yapmıştır. Feza Gürsoy’un bu
çevrede adını duyuran ilk çalışması yük bağımsızlığı ve Baryon korunumu ile
Pauli Transformasyonunun ilgisini gösteren makalesidir. Wolfgang Pauli ünlü Rus
fizikçisi Landau’ya yazdığı mektupta ilgisini çeken bu makaleden bahsetmekte ve
Heisenberg ile çalışmalarında bu simetriyi kendi spinor modellerinde kullanmayı
düşündüğünü söylemektedir. W.Pauli, kendisinden Princeton Enstitüsünde
çalışmalarına devam etmesi için referans isteyen Feza Gürsey’a gönderdiği
mektupta şöyle diyor:
“Ben, seni tavsiye
edebilir miyim diye düşünmüyorum, tam tersi, Princeton Enstitüsü’nü sana
tavsiye edebilir miyim diye düşünüyorum.”
1961 yılında Türkiye’ye
dönen Gürsey, 1974 yılına kadar Prof. Dr. Erdal İnönü’nün ısrarları ve
uğraşları sonucunda Orta Doğu Teknik Üniversitesi (ODTÜ) Teorik Fizik
Bölümü’nde profesör olarak çalışmıştır. Bu dönem içinde Türkiye’de teorik fizik
alanında yapılan çalışmaları canlandırmaya çalışımıştır. Princeton ve Yale
üniversitesinden ünlü fizikçileri ODTÜ’ye davet ederek bir çok konferansın
düzenlenmesini sağlamıştır. 1968 yılında TÜBİTAK Bilim Ödülü’nü almıştır.
1965-1974 yılları
arasında Yale Üniversitesi’nin Teorik Fizik Bölümü’ne teklifi üzerine ODTÜ’deki
görevinden ayrılmak istemeyen Gürsey, Yale Üniversitesinde konuk profesörlük
görevini kabul etmiş ve ODTÜ-Yale üniversiteleri arasında dönüşümlü olarak
lineer olmayan kiral modeller, konform simetri, genel görelilik üzerinde
çalışmalarını sürdürmüştür.
1974 yılında Feza
Gürsey’in Yale Üniversitesi Fizik Bölümün’ndeki profesörlüğü daimi hale gelmiş,
izni kaldırılmış ve ODTÜ’den ayrılmak zorunda bırakılmıştır. Gürsoy bunun
nedenlerini, Prof. Dr. Mustafa Parlar Eğitim ve Araştırma Vakfı’nca verilen
Bilim Hizmeti ve Onur Ödülü töreninde anlatmıştır:
“Birincisi, sık sık ve
ücretli izinli olarak dışarıdaki bilim merkezlerinde çalışmam ve bu bilimsel
alışverişe öğrencilerimi de katmam. İkincisi, Türkiye’mizin seviyesine ve
ihtiyaçlarına uygun olmayan üst düzeyde bir araştırma yaparak gençliğe zararlı
bir örnek olmam.”
Feza Gürsey 1971 yılından
1991 yılındaki emekliliğine kadar Yale Üniversitesi Fizik Bölümü’nde
çalışmıştır. 19 Ocak 1977′de temel parçacık fiziğine yaptığı katkılardan dolayı
Sheldon Glashow ile birlikte Oppenheimer Ödülü’nü aldı. Ödül için kendisini
tebrik eden öğrencilerine “Ödül, Yale ile Harvard arasında paylaşıldı yazıldı.
İsterdim ki, ODTÜ ve Harvard arasında paylaşıldı desinler” demiştir.
1991 yılındaki
emekliliğinden sonra Türkiye’ye dönmüş, Boğaziçi Üniversitesi’nin davetini
kabul ederek Fizik bölümündeki odasına yerleşmiştir. Bu sene içerisinde
yakalandığı prostat kanseri nedeni ile 13 Nisan 1992′de Yale Üniversitesi’nin
hastahanesinde vefat etmiştir. Naaşı Anadoluhisarı’nda aile mezarlığına
defnedilmiştir.
Ödülleri
1969 – Tübitak Bilim
Ödülü
1977 – S. Glashow ile
birlikte J.R. Oppenheimer Ödülü ; R. Griffiths ile Doğa *Bilimlerinde A.
Cressey Morrison Ödülü
1979 – Einstein Madalyası
1981 – College de Franceda
konuk profesör ve College de France Madalyası
1984 – İtalya
Cumhurbaşkanı’nın Commendatore Nişanı
1986 – Roma’da Konuk
Profesörlük ödülü
1989 – Türk Amerikan
Bilimcileri ve Mühendisleri Derneğinin Seçkin Bilimci Ödülü
1990 – Galatasaray Vakfı
Madalyası
Masatoşi Gündüz İkeda
(1926-2003)
(1926-2003)
Cebirsel sayılara
katkılarıyla tanınan Japon asıllı Türk matematik bilgini. 1948′de Osaka
Üniversitesi Matematik Bölümü’nü bitirdi. 1953′te doktor, 1955′te de doçent
unvanlarını aldı. 1957-59 arasında Almanya’da Hamburg Üniversitesi’nde Helmuth
Hasse’nin yanında araştırmalar yaptı. Hasse’nin önerisi üzerine 1960′ta
Türkiye’ye gelerek Ege Üniversitesi Tıp Fakültesinde İstatistik dersleri
vermeye başladı. 1961′de aynı üniversitenin fen fakültesinde yabancı uzmanlığa
atandı. 1964′te Türk uyruğuna geçerek, 1965′te doçent, 1966′da profesör oldu.
1968′de Ege Üniversitesi’nin izniyle bir yıl süreyle çalışmak üzere Orta Doğu
Teknik Üniversitesi’ne gitti. İzninin bitiminde Orta Doğu Teknik
Üniversitesi’nin sürekli kadrosuna girdi. Çeşitli tarihlerde Hamburg, ABD’deki
California ve Ürdün’deki Yermuk üniversitelerinde konuk öğretim üyesi,1976′da
Princeton’daki Yüksek Araştırma Enstitüsü’nde araştırmacı olarak çalıştı.
Türkiye Bilimsel ve Teknik Araştırma Kurumu’nun (Tübitak) Temel Bilimler
Araştırma Kurumunda yer aldı. Orta Doğu Teknik Üniversitesi Pür Matematik
Araştırma Ünitesi başkanlığı yaptı. Cebir ve sayılar kuramına katkılarından
dolayı 1979′da Tübitak Bilim Ödülü’nü kazandı. Japonya’da bulunduğu dönemde
halkalar kuramı ve grupların matrisle gösterimi üzerine araştırmalar yapan
İkeda, 1970′lerde cebirsel sayılar kuramına yönelerek, rasyonel sayılar
cisminin salt Galois grubunun otomorfizimleri ve tümelliği konularında önemli
çalışmalar gerçekleştirdi. Ünlü matematik dergisi Crelle’s Journal’da
yayımlanan bir çalışmasında Galois grubunun çok özel bir yapıda olduğunu
gösterdi.
Hayatının kısa özetinin sunumunu indirmek için tıklayın
Ali Nesin
(1956-)
Türk matematikçi. 1956′da
İstanbul’da doğdu. İlkokuldan sonra ortaokulu İstanbul’da Saint Joseph
Lisesi’nde, liseyi de İsviçre’nin Lozan kentinde tamamlayan Nesin 1977-1981
yılları arasında Paris VII Üniversitesi’nde matematik öğrenimi gördü. Daha
sonra ABD’de Yale Üniversitesi’nde matematiksel mantık ve cebir konularında
doktora yapan Ali Nesin, 1985-1986 arasında Kaliforniya Üniversitesi
Berkeley Kampusü’nde öğretim üyeliği yaptı.
Türkiye’ye kısa dönem askerlik görevi için geldiği sırada “orduyu isyana teşvik” iddiasıyla tutuklanarak yargılandı. Yargılanma sonunda beraat ettiği halde pasaport1987-1989 arasında Notre Dame Üniversitesi’nde yardımcı doçent, ardından 1995′e kadar Kaliforniya Üniversitesi Irvine Kampusü’nde doçent ve daha sonra profesör olarak görev yaptı. 1993-1994 Öğretim Yılı’nı Bilkent Üniversitesi’nde misafir öğretim görevlisi olarak geçirdi. 1995′te, babası Aziz Nesin’in ölümü üzerine yurda kesin dönüş yaptı ve Nesin Vakfı yöneticiliğini üstlendi. Ayrıca Bilgi Üniversitesi Kasım 2004′den beri de Nesin Yayınevi genel yönetmenliğini yapmaktadır. verilmediği için işine dönemeyen Nesin, sonunda yeniden passaport alarak yurtdışına gitti. Matematik Bölümü Başkanı olan Ali Nesin iki çocuk sahibidir.
Ali Nesin’in Matematik ve Korku, Matematik ve Doğa, Matematik ve Sonsuz,Develerle Eşekler, Önermeler Mantığı adlı kitaplarının yanısıra çeşitli dergilerde çıkmış bilimsel makaleleri ve İngilizce bir kitabı bulunmaktadır. Matematiksel araştırma alanı “Morley mertebesi sonlu gruplar”dır. Aynı zamanda, üç ayda bir yayımlanan, Matematik Dünyası adlı bir matematik dergisi çıkarmaktadır.
Matematik araştırmaları, bölüm başkanlığı ve Nesin Vakfı yöneticiliğinin yanı sıra yağlıboya resim, desen ve portre çalışmaları da yapmaktadır.
Ünlü Türk Matematikçiler
Reviewed by halis demirci
on
17.11.17
Rating:
Hiç yorum yok: